Hope everyone has had a wonderful holiday. I must admit that my own vacation wasn’t productive in the sense of completing projects: I spent far too much time sleeping in, relaxing and playing far too much Epic Mickey on my Wii. But I have also spent some time thinking about the past year and year to come with respect to the kind of fun projects that I like to do.
2010 wasn’t actually a banner year for my outside projects. I did a few smallish programming projects (mostly having to do with generating simple sounds). Tom and I managed to loft a camera on a kite once. I simulated some rainbows. I gathered some parts for a high altitude balloon launch. I bought an FPGA board and got it to blink some LEDs, but made relatively little traction on my ultimate goal of implementing a processor. And I did relatively little amateur radio.
So, here’s my list of projects that I’d like to see completed in 2011.
A high altitude balloon launch. It seems now that everyone is doing these, but I still would like to do one. I’ve got an OpenTracker to provide the APRS downlink, and have radios and cameras that could be used. What’s really required is for me to dedicate time to the construction and testing of the completed payload, and then start working on getting the necessary helium tank rentals and balloons. This would be a great project to fly in the summer when the cloud cover is minimal. Maybe a 4th of July launch?
Homebrew a radio. I did manage to get closer to finishing some of my kits over the vacation, but I’m increasingly dissatisfied with assembling PC boards as an intellectual activity. For one thing, if you make a mistake, desoldering and replacing components on a PCB is annoying, particularly when the PC board has been optimized for area by packing as many components onto a board as possible. But more than that, the PCB approach means that your design is fixed: modifications aren’t there to be explored. Classic fabrication techniques such as “Ugly” or “Manhattan” construction means that you can simply add or change components, and still arrive at RF circuits which perform well.
So, here’s my idea: construct a radio (receiver more important than transmitter) as a series of modules constructed with Manhattan style construction on a number of small boards. Concentrate on learning how each part functions and can be tested. Try to use common, inexpensive components. Make the final radio lunchbox size, rather than Altoid size, because that means we’ll have extra space to make modifications. Concentrate on improving your test equipment and the testing techniques.
Antennas. I live in one of those places with restrictive CC&Rs. In addition, the terrain of my lot presents some significant challenges. Currently, most of my ham radio operation is antenna limited: without better ability to hear signals, there is little point in beaming out more power. I’ve been reading a lot about small antennas (transmitting loops, helically wound verticals and short verticals). Develop and test some of these, perhaps using WSPR beacon operations using different antennas as comparisons.
FPGA cpus. I’ve wanted to learn about FPGA techniques to design a CPU for years. I now have a BASYS2 board from digilentinc, and while I’ve gotten it to blink some LEDs, I’m quite a long way from making a CPU. I have a feeling this project will linger on for quite some time, but I’m keeping it on the list.
Experiment with the Kinect. Carmen got me a Kinect for Christmas. I have a couple of projects that I want to keep under my hat until I make some progress on them, but it is a gadget with lots of hacking potential.
Meta issues. It dawns on me that part of my problem isn’t coming up with project ideas, it’s figuring out how to accomplish them. First of all, there are the usual problems of productivity. Balancing work and home life with the requirements of your hobby activities. I’m not always good at that. But I also think also that I spend a great deal of time working in isolation, and seeking out other enthusiasts, collaborators and mentors would significantly enhance my productivity. I’ll be working on that in 2011 as well.
If you made it this far, what are your projects that you’d like to see done in 2011? Either scribble them in comments, or make a post on your own blog or whatever and link them in the comments.
I have been reading “Small Antennas” by Volakis, et al. It describes several very effective techniques for producing antennas a small as 1/30 lambda with efficiencies and bandwidths comparable to a full size dipole. To date all the prototypes have been built at cm wavelengths, no doubt driven by the cellar telephone market. My goal is to consider how the techniques might be applied to the lower HF amateur bands. The challenge is mainly how to realize a viable structure as it appears they all rely on large patches or complex geometry that will make them unwieldy at such wavelengths.